Copied to
clipboard

G = C24.10D10order 320 = 26·5

10th non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.10D10, C23.14D20, (C2×C20).51D4, C2.6(C207D4), (C22×C4).91D10, (C22×C10).65D4, C10.58(C4⋊D4), C22.125(C2×D20), C54(C23.11D4), C2.6(C20.17D4), C10.38(C4.4D4), C22.98(C4○D20), (C22×C20).60C22, (C23×C10).36C22, C23.370(C22×D5), C10.10C4215C2, C10.16(C422C2), C22.96(D42D5), (C22×C10).328C23, C2.14(C23.D10), C2.8(C23.18D10), C10.73(C22.D4), C2.16(C22.D20), (C22×Dic5).42C22, (C2×C4⋊Dic5)⋊12C2, (C2×C10).432(C2×D4), (C2×C4).30(C5⋊D4), (C2×C22⋊C4).15D5, (C10×C22⋊C4).16C2, C22.126(C2×C5⋊D4), (C2×C23.D5).15C2, (C2×C10).144(C4○D4), SmallGroup(320,580)

Series: Derived Chief Lower central Upper central

C1C22×C10 — C24.10D10
C1C5C10C2×C10C22×C10C22×Dic5C2×C4⋊Dic5 — C24.10D10
C5C22×C10 — C24.10D10
C1C23C2×C22⋊C4

Generators and relations for C24.10D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=c, f2=d, ab=ba, ac=ca, eae-1=ad=da, faf-1=abd, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce9 >

Subgroups: 566 in 170 conjugacy classes, 59 normal (27 characteristic)
C1, C2 [×3], C2 [×4], C2 [×2], C4 [×7], C22 [×3], C22 [×4], C22 [×10], C5, C2×C4 [×2], C2×C4 [×17], C23, C23 [×2], C23 [×6], C10 [×3], C10 [×4], C10 [×2], C22⋊C4 [×6], C4⋊C4 [×2], C22×C4 [×2], C22×C4 [×4], C24, Dic5 [×4], C20 [×3], C2×C10 [×3], C2×C10 [×4], C2×C10 [×10], C2.C42 [×3], C2×C22⋊C4, C2×C22⋊C4 [×2], C2×C4⋊C4, C2×Dic5 [×12], C2×C20 [×2], C2×C20 [×5], C22×C10, C22×C10 [×2], C22×C10 [×6], C23.11D4, C4⋊Dic5 [×2], C23.D5 [×4], C5×C22⋊C4 [×2], C22×Dic5 [×4], C22×C20 [×2], C23×C10, C10.10C42, C10.10C42 [×2], C2×C4⋊Dic5, C2×C23.D5 [×2], C10×C22⋊C4, C24.10D10
Quotients: C1, C2 [×7], C22 [×7], D4 [×4], C23, D5, C2×D4 [×2], C4○D4 [×5], D10 [×3], C4⋊D4, C22.D4 [×3], C4.4D4, C422C2 [×2], D20 [×2], C5⋊D4 [×2], C22×D5, C23.11D4, C2×D20, C4○D20, D42D5 [×4], C2×C5⋊D4, C23.D10 [×2], C22.D20 [×2], C207D4, C23.18D10, C20.17D4, C24.10D10

Smallest permutation representation of C24.10D10
On 160 points
Generators in S160
(1 11)(2 132)(3 13)(4 134)(5 15)(6 136)(7 17)(8 138)(9 19)(10 140)(12 122)(14 124)(16 126)(18 128)(20 130)(21 159)(22 93)(23 141)(24 95)(25 143)(26 97)(27 145)(28 99)(29 147)(30 81)(31 149)(32 83)(33 151)(34 85)(35 153)(36 87)(37 155)(38 89)(39 157)(40 91)(41 51)(42 105)(43 53)(44 107)(45 55)(46 109)(47 57)(48 111)(49 59)(50 113)(52 115)(54 117)(56 119)(58 101)(60 103)(61 148)(62 82)(63 150)(64 84)(65 152)(66 86)(67 154)(68 88)(69 156)(70 90)(71 158)(72 92)(73 160)(74 94)(75 142)(76 96)(77 144)(78 98)(79 146)(80 100)(102 112)(104 114)(106 116)(108 118)(110 120)(121 131)(123 133)(125 135)(127 137)(129 139)
(1 47)(2 48)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 57)(12 58)(13 59)(14 60)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 149)(22 150)(23 151)(24 152)(25 153)(26 154)(27 155)(28 156)(29 157)(30 158)(31 159)(32 160)(33 141)(34 142)(35 143)(36 144)(37 145)(38 146)(39 147)(40 148)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 81)(72 82)(73 83)(74 84)(75 85)(76 86)(77 87)(78 88)(79 89)(80 90)(101 122)(102 123)(103 124)(104 125)(105 126)(106 127)(107 128)(108 129)(109 130)(110 131)(111 132)(112 133)(113 134)(114 135)(115 136)(116 137)(117 138)(118 139)(119 140)(120 121)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 121)(2 122)(3 123)(4 124)(5 125)(6 126)(7 127)(8 128)(9 129)(10 130)(11 131)(12 132)(13 133)(14 134)(15 135)(16 136)(17 137)(18 138)(19 139)(20 140)(21 72)(22 73)(23 74)(24 75)(25 76)(26 77)(27 78)(28 79)(29 80)(30 61)(31 62)(32 63)(33 64)(34 65)(35 66)(36 67)(37 68)(38 69)(39 70)(40 71)(41 114)(42 115)(43 116)(44 117)(45 118)(46 119)(47 120)(48 101)(49 102)(50 103)(51 104)(52 105)(53 106)(54 107)(55 108)(56 109)(57 110)(58 111)(59 112)(60 113)(81 148)(82 149)(83 150)(84 151)(85 152)(86 153)(87 154)(88 155)(89 156)(90 157)(91 158)(92 159)(93 160)(94 141)(95 142)(96 143)(97 144)(98 145)(99 146)(100 147)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 73 121 22)(2 72 122 21)(3 71 123 40)(4 70 124 39)(5 69 125 38)(6 68 126 37)(7 67 127 36)(8 66 128 35)(9 65 129 34)(10 64 130 33)(11 63 131 32)(12 62 132 31)(13 61 133 30)(14 80 134 29)(15 79 135 28)(16 78 136 27)(17 77 137 26)(18 76 138 25)(19 75 139 24)(20 74 140 23)(41 89 114 156)(42 88 115 155)(43 87 116 154)(44 86 117 153)(45 85 118 152)(46 84 119 151)(47 83 120 150)(48 82 101 149)(49 81 102 148)(50 100 103 147)(51 99 104 146)(52 98 105 145)(53 97 106 144)(54 96 107 143)(55 95 108 142)(56 94 109 141)(57 93 110 160)(58 92 111 159)(59 91 112 158)(60 90 113 157)

G:=sub<Sym(160)| (1,11)(2,132)(3,13)(4,134)(5,15)(6,136)(7,17)(8,138)(9,19)(10,140)(12,122)(14,124)(16,126)(18,128)(20,130)(21,159)(22,93)(23,141)(24,95)(25,143)(26,97)(27,145)(28,99)(29,147)(30,81)(31,149)(32,83)(33,151)(34,85)(35,153)(36,87)(37,155)(38,89)(39,157)(40,91)(41,51)(42,105)(43,53)(44,107)(45,55)(46,109)(47,57)(48,111)(49,59)(50,113)(52,115)(54,117)(56,119)(58,101)(60,103)(61,148)(62,82)(63,150)(64,84)(65,152)(66,86)(67,154)(68,88)(69,156)(70,90)(71,158)(72,92)(73,160)(74,94)(75,142)(76,96)(77,144)(78,98)(79,146)(80,100)(102,112)(104,114)(106,116)(108,118)(110,120)(121,131)(123,133)(125,135)(127,137)(129,139), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,149)(22,150)(23,151)(24,152)(25,153)(26,154)(27,155)(28,156)(29,157)(30,158)(31,159)(32,160)(33,141)(34,142)(35,143)(36,144)(37,145)(38,146)(39,147)(40,148)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(101,122)(102,123)(103,124)(104,125)(105,126)(106,127)(107,128)(108,129)(109,130)(110,131)(111,132)(112,133)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,121), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,61)(31,62)(32,63)(33,64)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,101)(49,102)(50,103)(51,104)(52,105)(53,106)(54,107)(55,108)(56,109)(57,110)(58,111)(59,112)(60,113)(81,148)(82,149)(83,150)(84,151)(85,152)(86,153)(87,154)(88,155)(89,156)(90,157)(91,158)(92,159)(93,160)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,73,121,22)(2,72,122,21)(3,71,123,40)(4,70,124,39)(5,69,125,38)(6,68,126,37)(7,67,127,36)(8,66,128,35)(9,65,129,34)(10,64,130,33)(11,63,131,32)(12,62,132,31)(13,61,133,30)(14,80,134,29)(15,79,135,28)(16,78,136,27)(17,77,137,26)(18,76,138,25)(19,75,139,24)(20,74,140,23)(41,89,114,156)(42,88,115,155)(43,87,116,154)(44,86,117,153)(45,85,118,152)(46,84,119,151)(47,83,120,150)(48,82,101,149)(49,81,102,148)(50,100,103,147)(51,99,104,146)(52,98,105,145)(53,97,106,144)(54,96,107,143)(55,95,108,142)(56,94,109,141)(57,93,110,160)(58,92,111,159)(59,91,112,158)(60,90,113,157)>;

G:=Group( (1,11)(2,132)(3,13)(4,134)(5,15)(6,136)(7,17)(8,138)(9,19)(10,140)(12,122)(14,124)(16,126)(18,128)(20,130)(21,159)(22,93)(23,141)(24,95)(25,143)(26,97)(27,145)(28,99)(29,147)(30,81)(31,149)(32,83)(33,151)(34,85)(35,153)(36,87)(37,155)(38,89)(39,157)(40,91)(41,51)(42,105)(43,53)(44,107)(45,55)(46,109)(47,57)(48,111)(49,59)(50,113)(52,115)(54,117)(56,119)(58,101)(60,103)(61,148)(62,82)(63,150)(64,84)(65,152)(66,86)(67,154)(68,88)(69,156)(70,90)(71,158)(72,92)(73,160)(74,94)(75,142)(76,96)(77,144)(78,98)(79,146)(80,100)(102,112)(104,114)(106,116)(108,118)(110,120)(121,131)(123,133)(125,135)(127,137)(129,139), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,149)(22,150)(23,151)(24,152)(25,153)(26,154)(27,155)(28,156)(29,157)(30,158)(31,159)(32,160)(33,141)(34,142)(35,143)(36,144)(37,145)(38,146)(39,147)(40,148)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(101,122)(102,123)(103,124)(104,125)(105,126)(106,127)(107,128)(108,129)(109,130)(110,131)(111,132)(112,133)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,121), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,61)(31,62)(32,63)(33,64)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,101)(49,102)(50,103)(51,104)(52,105)(53,106)(54,107)(55,108)(56,109)(57,110)(58,111)(59,112)(60,113)(81,148)(82,149)(83,150)(84,151)(85,152)(86,153)(87,154)(88,155)(89,156)(90,157)(91,158)(92,159)(93,160)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,73,121,22)(2,72,122,21)(3,71,123,40)(4,70,124,39)(5,69,125,38)(6,68,126,37)(7,67,127,36)(8,66,128,35)(9,65,129,34)(10,64,130,33)(11,63,131,32)(12,62,132,31)(13,61,133,30)(14,80,134,29)(15,79,135,28)(16,78,136,27)(17,77,137,26)(18,76,138,25)(19,75,139,24)(20,74,140,23)(41,89,114,156)(42,88,115,155)(43,87,116,154)(44,86,117,153)(45,85,118,152)(46,84,119,151)(47,83,120,150)(48,82,101,149)(49,81,102,148)(50,100,103,147)(51,99,104,146)(52,98,105,145)(53,97,106,144)(54,96,107,143)(55,95,108,142)(56,94,109,141)(57,93,110,160)(58,92,111,159)(59,91,112,158)(60,90,113,157) );

G=PermutationGroup([(1,11),(2,132),(3,13),(4,134),(5,15),(6,136),(7,17),(8,138),(9,19),(10,140),(12,122),(14,124),(16,126),(18,128),(20,130),(21,159),(22,93),(23,141),(24,95),(25,143),(26,97),(27,145),(28,99),(29,147),(30,81),(31,149),(32,83),(33,151),(34,85),(35,153),(36,87),(37,155),(38,89),(39,157),(40,91),(41,51),(42,105),(43,53),(44,107),(45,55),(46,109),(47,57),(48,111),(49,59),(50,113),(52,115),(54,117),(56,119),(58,101),(60,103),(61,148),(62,82),(63,150),(64,84),(65,152),(66,86),(67,154),(68,88),(69,156),(70,90),(71,158),(72,92),(73,160),(74,94),(75,142),(76,96),(77,144),(78,98),(79,146),(80,100),(102,112),(104,114),(106,116),(108,118),(110,120),(121,131),(123,133),(125,135),(127,137),(129,139)], [(1,47),(2,48),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,57),(12,58),(13,59),(14,60),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,149),(22,150),(23,151),(24,152),(25,153),(26,154),(27,155),(28,156),(29,157),(30,158),(31,159),(32,160),(33,141),(34,142),(35,143),(36,144),(37,145),(38,146),(39,147),(40,148),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,81),(72,82),(73,83),(74,84),(75,85),(76,86),(77,87),(78,88),(79,89),(80,90),(101,122),(102,123),(103,124),(104,125),(105,126),(106,127),(107,128),(108,129),(109,130),(110,131),(111,132),(112,133),(113,134),(114,135),(115,136),(116,137),(117,138),(118,139),(119,140),(120,121)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,121),(2,122),(3,123),(4,124),(5,125),(6,126),(7,127),(8,128),(9,129),(10,130),(11,131),(12,132),(13,133),(14,134),(15,135),(16,136),(17,137),(18,138),(19,139),(20,140),(21,72),(22,73),(23,74),(24,75),(25,76),(26,77),(27,78),(28,79),(29,80),(30,61),(31,62),(32,63),(33,64),(34,65),(35,66),(36,67),(37,68),(38,69),(39,70),(40,71),(41,114),(42,115),(43,116),(44,117),(45,118),(46,119),(47,120),(48,101),(49,102),(50,103),(51,104),(52,105),(53,106),(54,107),(55,108),(56,109),(57,110),(58,111),(59,112),(60,113),(81,148),(82,149),(83,150),(84,151),(85,152),(86,153),(87,154),(88,155),(89,156),(90,157),(91,158),(92,159),(93,160),(94,141),(95,142),(96,143),(97,144),(98,145),(99,146),(100,147)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,73,121,22),(2,72,122,21),(3,71,123,40),(4,70,124,39),(5,69,125,38),(6,68,126,37),(7,67,127,36),(8,66,128,35),(9,65,129,34),(10,64,130,33),(11,63,131,32),(12,62,132,31),(13,61,133,30),(14,80,134,29),(15,79,135,28),(16,78,136,27),(17,77,137,26),(18,76,138,25),(19,75,139,24),(20,74,140,23),(41,89,114,156),(42,88,115,155),(43,87,116,154),(44,86,117,153),(45,85,118,152),(46,84,119,151),(47,83,120,150),(48,82,101,149),(49,81,102,148),(50,100,103,147),(51,99,104,146),(52,98,105,145),(53,97,106,144),(54,96,107,143),(55,95,108,142),(56,94,109,141),(57,93,110,160),(58,92,111,159),(59,91,112,158),(60,90,113,157)])

62 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E···4L5A5B10A···10N10O···10V20A···20P
order12···22244444···45510···1010···1020···20
size11···144444420···20222···24···44···4

62 irreducible representations

dim111112222222224
type+++++++++++-
imageC1C2C2C2C2D4D4D5C4○D4D10D10C5⋊D4D20C4○D20D42D5
kernelC24.10D10C10.10C42C2×C4⋊Dic5C2×C23.D5C10×C22⋊C4C2×C20C22×C10C2×C22⋊C4C2×C10C22×C4C24C2×C4C23C22C22
# reps1312122210428888

Matrix representation of C24.10D10 in GL6(𝔽41)

100000
23400000
0040000
0004000
0000400
000001
,
4000000
0400000
001000
000100
0000400
0000040
,
100000
010000
0040000
0004000
0000400
0000040
,
100000
010000
001000
000100
0000400
0000040
,
1000000
38370000
00141600
0036900
000001
0000400
,
6280000
9350000
00352300
0027600
000090
0000032

G:=sub<GL(6,GF(41))| [1,23,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[10,38,0,0,0,0,0,37,0,0,0,0,0,0,14,36,0,0,0,0,16,9,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[6,9,0,0,0,0,28,35,0,0,0,0,0,0,35,27,0,0,0,0,23,6,0,0,0,0,0,0,9,0,0,0,0,0,0,32] >;

C24.10D10 in GAP, Magma, Sage, TeX

C_2^4._{10}D_{10}
% in TeX

G:=Group("C2^4.10D10");
// GroupNames label

G:=SmallGroup(320,580);
// by ID

G=gap.SmallGroup(320,580);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,120,254,387,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=c,f^2=d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^9>;
// generators/relations

׿
×
𝔽